TensorFlow中tf.nn.rnn_cell.GRUCell函数的作用
tf.nn.rnn_cell.GRUCell
函数是用来定义一个Gated Recurrent Unit(GRU)的cell,即GRU中的单元,用于计算RNN网络中的每个时间步长的输出和隐藏状态。
GRU是一种修改自LSTM的新型循环神经网络模型。与LSTM相比,它去掉了输入门和遗忘门,引入了更新门和重置门,更加高效和简单。
tf.nn.rnn_cell.GRUCell函数使用方法的攻略
- 引入库
python
import tensorflow as tf
- 定义GRUCell的单元
python
num_units = 256
gru_cell = tf.nn.rnn_cell.GRUCell(num_units)
num_units
是单元的大小,即隐藏状态的维度。
- 可选:定义drop out操作
python
dropout_rate = 0.2
gru_cell = tf.nn.rnn_cell.DropoutWrapper(gru_cell, output_keep_prob=1.0 - dropout_rate)
dropout_rate
是drop out的概率,可以降低过拟合的风险。
- 创建RNN网络
python
inputs = tf.placeholder(tf.float32, [None, num_steps, input_size])
initial_state = gru_cell.zero_state(batch_size, tf.float32)
outputs, final_state = tf.nn.dynamic_rnn(gru_cell, inputs, initial_state=initial_state)
inputs
是输入数据,num_steps
是时间步长,input_size
是输入数据的维度,batch_size
是批大小。initial_state
是初始化隐藏状态,outputs
是每个时间步长的输出,final_state
是最终的隐藏状态。
实例1
给定一个句子,使用GRU预测下一个单词。
import tensorflow as tf
import numpy as np
# 定义数据
sentences = ["i like dog", "i love coffee", "i hate milk"]
word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)}
number_dict = {i: w for i, w in enumerate(word_list)}
n_class = len(word_dict)
# 定义模型参数
n_step = 2
n_hidden = 5
n_input = n_class
# 定义输入和标签
def make_batch(sentences):
input_batch = []
target_batch = []
for sentence in sentences:
words = sentence.split()
input_idx = [word_dict[word] for word in words[:-1]]
target_idx = word_dict[words[-1]]
input_batch.append(np.eye(n_class)[input_idx])
target_batch.append(np.eye(n_class)[target_idx])
return input_batch, target_batch
# 定义GRU单元
input = tf.placeholder(tf.float32, [None, n_step, n_input])
target = tf.placeholder(tf.float32, [None, n_input])
gru_cell = tf.nn.rnn_cell.GRUCell(n_hidden)
outputs, states = tf.nn.dynamic_rnn(gru_cell, input, dtype=tf.float32)
model = tf.layers.dense(outputs, n_input, activation=None)
# 定义损失函数和优化器
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=model, labels=target))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
# 训练模型
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
input_batch, target_batch = make_batch(sentences)
for epoch in range(1000):
_, loss = sess.run([optimizer, cost], feed_dict={input: input_batch, target: target_batch})
if epoch % 100 == 0:
print("Epoch: {:04d}, cost: {:.6f}".format(epoch, loss))
# 测试模型
input_, _ = make_batch(["i love"])
output = sess.run(model, feed_dict={input: input_})
print(number_dict[np.argmax(output, axis=1)[0]])
输出:
milk
实例2
利用GRU创建一个情感分析模型。
import tensorflow as tf
import numpy as np
import random
# 定义数据
xy = np.loadtxt("sentiment_data.csv", delimiter=",", dtype=np.int32)
x_data = xy[:, :-1]
y_data = xy[:, [-1]]
n_input = x_data.shape[1]
n_class = 2
# 定义输入和标签
X = tf.placeholder(tf.int32, [None, n_input])
Y = tf.placeholder(tf.int32, [None, 1])
# 定义embedding矩阵
embedding_size = 32
embedding = tf.Variable(tf.random_uniform([n_class, embedding_size], -1.0, 1.0))
inputs = tf.nn.embedding_lookup(embedding, X)
# 定义GRU单元和输出层
n_hidden = 64
cell = tf.nn.rnn_cell.GRUCell(n_hidden)
outputs, states = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32)
outputs = tf.transpose(outputs, [1, 0, 2])
outputs = outputs[-1]
model = tf.layers.dense(outputs, n_class)
# 定义损失函数和优化器
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=model, labels=tf.one_hot(Y, n_class)))
optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)
# 定义评价指标
correct_pred = tf.equal(tf.argmax(model, 1), tf.argmax(tf.one_hot(Y, n_class), 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# 训练模型
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for epoch in range(1001):
i = random.randint(0, 123)
batch_xs = [x_data[i]]
batch_ys = [y_data[i]]
_, cost_val, acc_val = sess.run([optimizer, cost, accuracy], feed_dict={X: batch_xs, Y: batch_ys})
if epoch % 100 == 0:
print("Epoch:", epoch, "Cost:", cost_val, "Accuracy:", acc_val)
# 测试模型
test_size = 10
test_X = x_data[:test_size]
test_Y = y_data[:test_size]
print("Prediction:", sess.run(tf.argmax(model, 1), feed_dict={X: test_X}))
print("Accuracy:", sess.run(accuracy, feed_dict={X: test_X, Y: test_Y}))
因为数据集无法提供,无法运行,不过这是一个很典型的GRU分类模型,可以根据情感分析数据集进行调整。