论文笔记之:Conditional Generative Adversarial Nets的完整攻略
Conditional Generative Adversarial Nets(CGAN)是一种生成对抗网络(GAN)的扩展,它可以生成特定条件下的图像。本攻略将详细讲解CGAN的原理、训练过程和应用场景,过程中将至少包含两个示例说明。
原理
CGAN是一种生成对抗网络,它由两个神经网络组成:生成器和判别器。生成器接收一个条件向量和一个随机噪声向量作为输入,并生成一个与条件相对应的图像。判别器接收图像和一个条件向量作为输入,并输出一个0到1之间的值,表示该图像是否与条件相对应。生成器和判别通过对抗训练来提高自己的性能,最终生成器可以生成与条件相对应的高质量图像。
训练过程
CGAN的训练过程与普通的GAN类似,但是需要在输入中添加条件向量。具体步骤如下:
- 定义生成器和判别器的网络结构。
- 定义损失函数,包括生成器的损失函数和判别器的损失函数。
- 定义优化器,使用反向传播法更新网络参数。
- 在每个训练迭代中,从数据集中随机选择一个条件向量和一个随机噪声向量作为输入,使用生成器生成一个图像,并将图像和条件向量输入到判别器中进行判别。根据判别器的输出计算损失,并使用反向传播算法更新网络参数。
应用场景
CGAN可以应用于许多领域,例如图像生成、图像修、图像转换等。以下是两个示例说明:
示例1:图像生成
使用CGAN可以生成特定条件下的图像,例如生成特定风格的衣服、生成特定颜色的汽车等。以下是一个示例代码:
import tensorflow as tf
from.keras.layers import Dense, Reshape, Conv2DTranspose, BatchNormalization, LeakyReLU, Conv2D, Flatten
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
import numpy as np
import matplotlib.pyplot as plt
# 定义生成器
def build_generator():
model = Sequential()
model.add(Dense(256, input_dim=100, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(512, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(1024, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(28*28*1, activation='tanh'))
model.add(Reshape((28, 28, 1)))
return model
# 定义判别器
def build_discriminator():
model = Sequential()
model.add(Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=(28, 28, 1)))
model.add(LeakyReLU(0.2))
model.add(Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(LeakyReLU(0.2))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
return model
# 定义CGAN模型
def build_cgan(generator, discriminator):
z = tf.keras.layers.Input(shape=(100,))
label = tf.keras.layers.Input(shape=(1,))
label_embedding = tf.keras.layers.Embedding(10, 100)(label)
label_embedding = tf.keras.layers.Flatten()(label_embedding)
joined_representation = tf.keras.layers.Multiply()([z, label_embedding])
image = generator(joined_representation)
discriminator.trainable = False
valid = discriminator(image)
model = tf.keras.models.Model([z, label], valid)
model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0002, beta_1=0.5))
return model
# 加载MNIST数据集
(X_train, y_train), (_, _) = tf.keras.datasets.mnist.load_data()
X_train = X_train / 127.5 - 1.
X_train = np.expand_dims(X_train, axis=3)
# 定义生成器、判别器和CGAN模型
generator = build_generator()
discriminator = build_discriminator()
cgan = build_cgan(generator, discriminator)
# 训练CGAN模型
epochs = 10000
batch_size = 32
sample_interval = 1000
for epoch in range(epochs):
idx = np.random.randint(0, X_train.shape[0], batch_size)
real_images = X_train[idx]
labels = y_train[idx]
noise = np.random.normal(0, 1, (batch_size, 100))
gen_images = generator.predict([noise, labels])
d_loss_real = discriminator.train_on_batch(real_images, np.ones((batch_size, 1)))
d_loss_fake = discriminator.train_on_batch(gen_images, np.zeros((batch_size, 1)))
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
noise = np.random.normal(0, 1, (batch_size, 100))
g_loss = cgan.train_on_batch([noise, labels], np.ones((batch_size, 1)))
if epoch % sample_interval == 0:
print("Epoch %d [D loss: %f] [G loss: %f]" % (epoch, d_loss, g_loss))
noise = np.random.normal(0, 1, (10, 100))
labels = np.arange(0, 10).reshape(-1, 1)
gen_images = generator.predict([noise, labels])
gen_images = 0.5 * gen_images + 0.5
fig, axs = plt.subplots(2, 5)
cnt = 0
for i in range(2):
for j in range(5):
axs[i,j].imshow(gen_images[cnt, :, :, 0], cmap='gray')
axs[i,j].axis('off')
cnt += 1
plt.show()
在上面的示例代码中,使用CGAN生成手写数字图像。生成器接收一个100维的随机噪声向量和一个标签向量作为输入,并生成一个与标签相对应的手写数字图像。判别器接收一个手写数字图像和一个标签向量作为输入,并输出一个0到1之间的值,表示该图像是否与标签相对应。CGAN通过对抗训练来提高自己的性能,最终生成器可以生成与标签相对应的高质量手写数字像。
示例2:图像转换
使用CGAN可以将一种图像转换成另一种图像,例如将黑白图像转换成彩色图像。以下是一个示例代码:
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Dropout, Concatenate, Conv2D, UpSampling2D
from tensorflow.keras.layers import BatchNormalization, Activation, ZeroPadding2D
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.optimizers import Adam
import datetime
import matplotlib.pyplot as plt
import sys
import numpy as np
# 定义生成器
def build_generator():
model = Sequential()
model.add(Dense(256, input_dim=100))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod((28, 28, 3)), activation='tanh'))
model.add(Reshape((28, 28, 3)))
return model
# 定义判别器
def build_discriminator():
model = Sequential()
model.add(Flatten(input_shape=(28, 28, 3)))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(1, activation='sigmoid'))
return model
# 定义CGAN模型
def build_cgan(generator, discriminator):
z = Input(shape=(100,))
label = Input(shape=(1,), dtype='int32')
label_embedding = Flatten()(Embedding(10, 100)(label))
joined_representation = Concatenate()([z, label_embedding])
image = generator(joined_representation)
discriminator.trainable = False
valid = discriminator(image)
model = Model([z, label], valid)
model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0002, beta_1=0.5))
return model
# 加载MNIST数据集
(X_train, y_train), (_, _) = tf.keras.datasets.mnist.load_data()
X_train = X_train / 127.5 - 1.
X_train = np.expand_dims(X_train, axis=3)
y_train = y_train.reshape(-1, 1)
# 定义生成器、判别器和CGAN模型
generator = build_generator()
discriminator = build_discriminator()
cgan = build_cgan(generator, discriminator)
# 训练CGAN模型
epochs = 20000
batch_size = 32
sample_interval = 1000
for epoch in range(epochs):
idx = np.random.randint(0, X_train.shape[0], batch_size)
real_images = X_train[idx]
labels = y_train[idx]
noise = np.random.normal(0, 1, (batch_size, 100))
gen_images = generator.predict([noise, labels])
d_loss_real = discriminator.train_on_batch(real_images, np.ones((batch_size, 1)))
d_loss_fake = discriminator.train_on_batch(gen_images, np.zeros((batch_size, 1)))
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
noise = np.random.normal(0, 1, (batch_size, 100))
sampled_labels = np.random.randint(0, 10, batch_size).reshape(-1, 1)
g_loss = cgan.train_on_batch([noise, sampled_labels], np.ones((batch_size, 1)))
if epoch % sample_interval == 0:
print("Epoch %d [D loss: %f] [G loss: %f]" % (epoch, d_loss, g_loss))
noise = np.random.normal(0, 1, (10, 100))
sampled_labels = np.arange(0, 10).reshape(-1, 1)
gen_images = generator.predict([noise, sampled_labels])
gen_images = 0.5 * gen_images + 0.5
fig, axs = plt.subplots(2, 5)
cnt = 0
for i in range(2):
for j in range(5):
axs[i,j].imshow(gen_images[cnt, :, :, :], cmap='gray')
axs[i,j].axis('off')
cnt += 1
plt.show()
在上面的示例代码中,使用CGAN将黑白手写数字图像转换成彩色手写数字图像。生成器接收100维的随机噪声向量和一个标签向量作为输入,并生成一个与标签相对应的彩色手写数字图像。判别器接收一个彩色手写数字图像和一个标签向量作为输入,并输出一个0到1之间的值,表示该图像是否与标签相对应。CGAN通过对抗训来提高自己的性能,最终生成器可以将黑白手写数字图像转换成与标签相对应的彩色手写数字图像。
总结
本攻略详细讲解了CGAN的原理、训练过程和应用场景,包括图像生成和图像转换。在实际应用中,可以根据需要选择适合自己的方法来使用CGAN。