MacOS(M1芯片 arm架构)下安装PyTorch的详细过程

  • Post category:Python

在MacOS(M1芯片 arm架构)下安装PyTorch的过程中,需要注意以下几个步骤:

  1. 安装Xcode Command Line Tools

在终端中输入以下命令安装Xcode Command Line Tools:

xcode-select --install
  1. 安装Homebrew

在终端输入以下命令安装Homebrew:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
  1. 安装Python3

在终端中输入以下命令安装Python3:

brew install python3
  1. 安装PyTorch

在终端中输入以下命令安装PyTorch:

pip3 install torch torchvision torchaudio
  1. 验证安装

在终端中输入以下命令验证PyTorch是否安装成功:

python3 -c "import torch; print(torch.__version__)"

如果输出了PyTorch的版本号,则表示安装成功。

以下是两个示例:

示例一:使用PyTorch实现线性回归

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# 生成数据
np.random.seed(1)
x = np.random.rand(100, 1)
y = 2 + 3 * x + 0.2 * np.random.randn(100, 1)

# 转换为Tensor
x = torch.from_numpy(x).float()
y = torch.from_numpy(y).float()

# 定义模型
model = nn.Linear(1, 1)

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# 训练模型
num_epochs = 1000
for epoch in range(num_epochs):
    # 前向传播
    outputs = model(x)
    loss = criterion(outputs, y)

    # 反向传播
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # 打印损失值
    if (epoch+1) % 100 == 0:
        print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

# 可视化结果
predicted = model(x).detach().numpy()
plt.plot(x.numpy(), y.numpy(), 'ro', label='Original data')
plt.plot(x.numpy(), predicted, label='Fitted line')
plt.legend()
plt.show()

示例二:使用PyTorch实现卷积神经网络

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

# 定义数据预处理
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5,), (0.5,))])

# 加载数据集
trainset = torchvision.datasets.MNIST(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.MNIST(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64,
                                         shuffle=False, num_workers=2)

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 nn.Conv2d(1, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(nn.functional.relu(self.conv1(x)))
        x = self.pool(nn.functional.relu(self.conv2(x)))
        x = x.view(-1, 16 * 4 * 4)
        x = nn.functional.relu(self.fc1(x))
        x = nn.functional.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 训练模型
for epoch in range(10):
    running_loss = 0.0
    for i, data in(trainloader, 0):
        inputs, labels = data
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 100 == 99:
            print('[%d, %5d] loss: %.3f' %
                  (epoch + , i + 1, running_loss / 100))
            running_loss = 0.0

print('Finished Training')

# 测试模型
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))