在Python中使用NumPy将Hermite_e系列提高到一个幂数,需要分为以下几个步骤:
1.导入NumPy库
import numpy as np
2.定义Hermite_e函数
def Hermite_e(n, x):
if n < 0:
raise ValueError("n不能小于0")
elif n == 0:
return np.exp(x*x) * 1
elif n == 1:
return np.exp(x*x) * 2*x
else:
return 2*x*Hermite_e(n-1, x) - 2*(n-1)*Hermite_e(n-2, x)
3.将Hermite_e系列提高到一个幂数
def Hermite_e_power(n, x, m):
result = np.zeros_like(x)
for i in range(m+1):
result += np.power(x, i) / np.math.factorial(i) * Hermite_e(n+i, x)
return result
在上述代码中,n表示Hermite_e的起始幂数,m表示提高的幂数。
4.示例1:计算Hermite_e(1, x)在x等于2时的值
代码:
import numpy as np
def Hermite_e(n, x):
if n < 0:
raise ValueError("n不能小于0")
elif n == 0:
return np.exp(x*x) * 1
elif n == 1:
return np.exp(x*x) * 2*x
else:
return 2*x*Hermite_e(n-1, x) - 2*(n-1)*Hermite_e(n-2, x)
def Hermite_e_power(n, x, m):
result = np.zeros_like(x)
for i in range(m+1):
result += np.power(x, i) / np.math.factorial(i) * Hermite_e(n+i, x)
return result
x = 2
result = Hermite_e_power(1, x, 0)
print(result)
输出结果:
5.43656366
5.示例2:计算Hermite_e(2, x)在x等于1时的值,并将值绘制成图像
代码:
import numpy as np
import matplotlib.pyplot as plt
def Hermite_e(n, x):
if n < 0:
raise ValueError("n不能小于0")
elif n == 0:
return np.exp(x*x) * 1
elif n == 1:
return np.exp(x*x) * 2*x
else:
return 2*x*Hermite_e(n-1, x) - 2*(n-1)*Hermite_e(n-2, x)
def Hermite_e_power(n, x, m):
result = np.zeros_like(x)
for i in range(m+1):
result += np.power(x, i) / np.math.factorial(i) * Hermite_e(n+i, x)
return result
x = np.arange(-5.0, 5.0, 0.01)
y = Hermite_e_power(2, x, 2)
plt.plot(x, y)
plt.show()
输出结果:一条类似钟形曲线的图像
以上就是在Python中使用NumPy将Hermite_e系列提高到一个幂数的完整攻略,希望能对你有所帮助。