PyTorch训练LSTM时loss.backward()报错的解决方案

  • Post category:Python

一、问题描述

在使用PyTorch训练LSTM模型时,有时会遇到loss.backward()报错的问题,提示如下:

RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn

这个错误提示很明显是与计算图(Computation Graph)有关的。计算图是PyTorch中用于实现自动求导(Autograd)的一种机制,通过计算图可以自动地计算一个计算图中任意节点的梯度信息,并用于反向传播和参数更新。当模型中某些参数或计算节点不需要计算梯度时,就需要在计算图中设置requires_grad=False

但是,如果在计算图中有某个张量的requires_grad=False,那么就不能调用backward()方法来计算梯度,否则会出现上述错误。

二、解决方案

解决该问题的方法是,检查计算图中每个计算节点的requires_grad属性,将不需要计算梯度的节点设置为requires_grad=False。具体来说,可以使用如下方法:

for param in model.parameters():
    param.requires_grad = True

或者,如果模型中有某些参数不需要计算梯度,可以对这些参数单独设置requires_grad=False:

model.rnn.weight_ih_l0.requires_grad = False
model.rnn.weight_hh_l0.requires_grad = False

在这里,我们使用一个简单的示例来演示如何解决该问题。假设我们的LSTM模型代码如下:

import torch.nn as nn
class LSTMModel(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(LSTMModel, self).__init__()
        self.hidden_dim = hidden_dim
        self.lstm = nn.LSTM(input_dim, hidden_dim)
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        output = self.fc(lstm_out[-1, :, :])
        return output

我们发现,当我们尝试使用该模型进行训练时,loss.backward()报错,提示requires_grad=False

model = LSTMModel(10, 20, 2)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
for i in range(10):
    x = torch.randn(5, 3, 10)
    y = torch.LongTensor([0, 1, 0])
    y_pred = model(x)
    loss = loss_fn(y_pred, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

为了解决该问题,我们需要将模型中所有的参数都设置为requires_grad=True。我们可以使用如下方法:

model = LSTMModel(10, 20, 2)
for param in model.parameters():
    param.requires_grad = True
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
for i in range(10):
    x = torch.randn(5, 3, 10)
    y = torch.LongTensor([0, 1, 0])
    y_pred = model(x)
    loss = loss_fn(y_pred, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

通过将参数设置为requires_grad=True,我们已经成功地解决了上述问题。

三、示例说明

除了上述演示的示例外,我们在下面再举两个具体的例子来说明这个问题。

(1)LSTM+Attention模型

我们先编写一个带有Attention机制的LSTM模型,代码如下:

import torch.nn as nn
class LSTM_Model_Attention(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(LSTM_Model_Attention, self).__init__()
        self.hidden_dim = hidden_dim
        self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True)
        self.attention = nn.Linear(hidden_dim, 1)
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        attention_scores = self.attention(lstm_out).squeeze(2)
        attention_weights = F.softmax(attention_scores, dim=1)
        attention_weights = attention_weights.unsqueeze(2)
        weighted_lstm_out = lstm_out * attention_weights
        attention_out = torch.sum(weighted_lstm_out, dim=1)
        output = self.fc(attention_out)
        return output

当我们尝试使用该模型进行训练时,同样会发生上述问题。同样的,我们将模型中所有参数的requires_grad属性都设置为True

model = LSTM_Model_Attention(10, 20, 2)
for param in model.parameters():
    param.requires_grad = True
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
for i in range(10):
    x = torch.randn(5, 3, 10)
    y = torch.LongTensor([0, 1, 0])
    y_pred = model(x)
    loss = loss_fn(y_pred, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

(2)双向LSTM模型

我们再来看一个双向LSTM模型的例子,代码如下:

import torch.nn as nn
class BiLSTM_Model(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(BiLSTM_Model, self).__init__()
        self.hidden_dim = hidden_dim
        self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True, bidirectional=True)
        self.fc = nn.Linear(hidden_dim*2, output_dim)

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        lstm_out = lstm_out.reshape(-1, self.hidden_dim*2)
        output = self.fc(lstm_out)
        return output

同样的,当我们尝试使用这个模型进行训练时,同样会出现上述问题。

model = BiLSTM_Model(10, 20, 2)
for param in model.parameters():
    param.requires_grad = True
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
for i in range(10):
    x = torch.randn(5, 3, 10)
    y = torch.LongTensor([0, 1, 0])
    y_pred = model(x)
    loss = loss_fn(y_pred, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

因此,对于任何有关LSTM模型的训练问题,当出现loss.backward()报错时,我们应该首先检查模型中所有参数的requires_grad属性,并将不需要计算梯度的参数设置为requires_grad=False