NLP之什么是AllenNLP?

AllenNLP是一个开源的自然语言处理(NLP)平台,它的目标是为研究人员和工程师提供一种易于使用的NLP工具箱,以加速自然语言处理研究的发展。它提供了许多已经实现的NLP模型和组件,包括文本分类、命名实体识别、文本分析和机器翻译等。

下面分别介绍如何使用AllenNLP进行文本分类和命名实体识别两个示例。

使用AllenNLP进行文本分类

下面是一个使用AllenNLP进行文本分类的示例,其中我们将使用IMDB电影评论数据集进行情感分析。首先,我们需要在AllenNLP中定义一个文本分类器。以下是一个简单的代码示例:

from typing import Iterator, List, Dict

import torch
import torch.optim as optim
import numpy as np

from allennlp.data import Instance
from allennlp.data.fields import TextField, LabelField
from allennlp.data.dataset_readers import DatasetReader
from allennlp.data.tokenizers import Token
from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer
from allennlp.models import Model
from allennlp.modules import TextFieldEmbedder, Seq2VecEncoder, FeedForward
from allennlp.modules.seq2vec_encoders import BagOfEmbeddingsEncoder
from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder
from allennlp.training.metrics import CategoricalAccuracy
from allennlp.nn.util import get_text_field_mask

class SimpleClassifier(Model):
    def __init__(self,
                 text_field_embedder: TextFieldEmbedder,
                 encoder: Seq2VecEncoder,
                 feedforward: FeedForward,
                 dropout: float = None) -> None:
        super().__init__(vocab)

        self.text_field_embedder = text_field_embedder
        self.encoder = encoder
        self.feedforward = feedforward
        self.dropout = torch.nn.Dropout(dropout) if dropout else None

        self.accuracy = CategoricalAccuracy()
        self.loss_function = torch.nn.CrossEntropyLoss()

    def forward(self,
                tokens: Dict[str, torch.Tensor],
                label: torch.Tensor = None) -> Dict[str, torch.Tensor]:
        mask = get_text_field_mask(tokens)

        embeddings = self.text_field_embedder(tokens)
        encoder_out = self.encoder(embeddings, mask)

        if self.dropout:
            encoder_out = self.dropout(encoder_out)

        logits = self.feedforward(encoder_out)

        output = {"logits": logits}

        if label is not None:
            self.accuracy(logits, label)
            output["loss"] = self.loss_function(logits, label)

        return output

定义好分类器后,我们需要定义数据读取器,下面是一个简单的示例:

class ImdbDatasetReader(DatasetReader):
    def __init__(self, token_indexers: Dict[str, TokenIndexer] = None) -> None:
        super().__init__(lazy=False)
        self.token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()}

    def text_to_instance(self, text: str, label: str = None) -> Instance:
        tokens = [Token(word) for word in text.split()]
        text_field = TextField(tokens, self.token_indexers)

        fields = {"tokens": text_field}

        if label is not None:
            fields["label"] = LabelField(label)

        return Instance(fields)

    def _read(self, file_path: str) -> Iterator[Instance]:
        with open(file_path, "r") as text_file:
            for line in text_file:
                label, text = line.strip().split("\t")
                yield self.text_to_instance(text, label)

有了数据读取器和分类器,我们就可以开始训练模型了。下面是一个训练模型的示例:

reader = ImdbDatasetReader()
train_dataset = reader.read("train.txt")
dev_dataset = reader.read("dev.txt")

vocab = Vocabulary.from_instances(train_dataset + dev_dataset)

token_embedding = Embedding(num_embeddings=vocab.get_vocab_size('tokens'),
                            embedding_dim=EMBEDDING_DIM)
word_embeddings = BasicTextFieldEmbedder({"tokens": token_embedding})

encoder = BagOfEmbeddingsEncoder(EMBEDDING_DIM)

feedforward = torch.nn.Sequential(
    torch.nn.Linear(encoder.get_output_dim(), HIDDEN_DIM),
    torch.nn.ReLU(),
    torch.nn.Linear(HIDDEN_DIM, num_labels))

model = SimpleClassifier(word_embeddings, encoder, feedforward, DROPOUT)

optimizer = optim.Adam(model.parameters())

iterator = BucketIterator(batch_size=BATCH_SIZE, sorting_keys=[("tokens", "num_tokens")])

iterator.index_with(vocab)

trainer = Trainer(model=model,
                  optimizer=optimizer,
                  iterator=iterator,
                  train_dataset=train_dataset,
                  validation_dataset=dev_dataset,
                  patience=10,
                  num_epochs=NUM_EPOCHS,
                  cuda_device=0)

trainer.train()

训练完成后,我们可以使用训练好的模型对新的电影评论进行情感分析。以下是一个简单的代码示例:

from allennlp.predictors.predictor import Predictor

predictor = Predictor.from_path("path/to/trained/model/file")

result = predictor.predict("This movie is terrible")

以上就是使用AllenNLP进行文本分类的示例。下面我们将介绍如何使用AllenNLP进行命名实体识别。

使用AllenNLP进行命名实体识别

下面是一个使用AllenNLP进行命名实体识别的示例,其中我们将使用CoNLL-2003数据集进行命名实体识别。首先,我们需要在AllenNLP中定义一个命名实体识别器。以下是一个简单的代码示例:

from typing import Iterator, List, Dict

import torch
from torch.nn import Dropout, Linear
from allennlp.data import Instance
from allennlp.data.fields import TextField, SequenceLabelField
from allennlp.data.dataset_readers import DatasetReader
from allennlp.data.tokenizers import Token
from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer
from allennlp.models import Model
from allennlp.modules import TextFieldEmbedder, Seq2SeqEncoder, TimeDistributed, ConditionalRandomField
from allennlp.modules.seq2vec_encoders import BagOfEmbeddingsEncoder
from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder
from allennlp.training.metrics import CategoricalAccuracy
from allennlp.nn.util import get_text_field_mask

class SimpleTagger(Model):
    def __init__(self,
                 text_field_embedder: TextFieldEmbedder,
                 encoder: Seq2SeqEncoder,
                 dropout: float = None,
                 num_labels: int = None) -> None:
        super().__init__(vocab)

        self.text_field_embedder = text_field_embedder
        self.encoder = encoder
        self.time_distributed = TimeDistributed(Linear(encoder.get_output_dim(), num_labels))
        self.dropout = Dropout(dropout) if dropout else None

        self.loss = torch.nn.CrossEntropyLoss()
        self.accuracy = CategoricalAccuracy()

    def forward(self,
                tokens: Dict[str, torch.Tensor],
                tags: torch.Tensor = None) -> Dict[str, torch.Tensor]:
        mask = get_text_field_mask(tokens)

        embeddings = self.text_field_embedder(tokens)
        encoder_out = self.encoder(embeddings, mask)

        if self.dropout:
            encoder_out = self.dropout(encoder_out)

        tag_logits = self.time_distributed(encoder_out)
        output = {"tag_logits": tag_logits}

        if tags is not None:
            self.accuracy(tag_logits, tags, mask.float())
            output["loss"] = self.loss(tag_logits, tags, mask.float())

        return output

定义好命名实体识别器后,我们需要定义数据读取器,下面是一个简单的示例:

class Conll2003DatasetReader(DatasetReader):
    def __init__(self, token_indexers: Dict[str, TokenIndexer] = None) -> None:
        super().__init__(lazy=False)
        self.token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()}

    def text_to_instance(self, tokens: List[Token], tags: List[str] = None) -> Instance:
        token_field = TextField(tokens, self.token_indexers)

        fields = {"tokens": token_field}

        if tags is not None:
            label_field = SequenceLabelField(labels=tags, sequence_field=token_field)
            fields["tags"] = label_field

        return Instance(fields)

    def _read(self, file_path: str) -> Iterator[Instance]:
        with open(file_path, encoding="utf-8") as file:
            tokens = []
            tags = []
            for line in file:
                line = line.strip().split()
                if not line:
                    if tokens:
                        yield self.text_to_instance(tokens, tags)
                        tokens = []
                        tags = []
                else:
                    token, tag = line
                    tokens.append(Token(token))
                    tags.append(tag)

            if tokens:
                yield self.text_to_instance(tokens, tags)

有了数据读取器和命名实体识别器,我们就可以开始训练模型了。下面是一个训练模型的示例:

reader = Conll2003DatasetReader()
train_dataset = reader.read("train.txt")
dev_dataset = reader.read("dev.txt")

vocab = Vocabulary.from_instances(train_dataset + dev_dataset)

token_embedding = Embedding(num_embeddings=vocab.get_vocab_size('tokens'),
                            embedding_dim=EMBEDDING_DIM)
word_embeddings = BasicTextFieldEmbedder({"tokens": token_embedding})

encoder = BagOfEmbeddingsEncoder(EMBEDDING_DIM)

model = SimpleTagger(word_embeddings, encoder, DROPOUT, VOCAB.get_vocab_size('labels'))

iterator = BucketIterator(batch_size=BATCH_SIZE, sorting_keys=[("tokens", "num_tokens")])

iterator.index_with(vocab)

trainer = Trainer(model=model,
                  optimizer=optimizer,
                  iterator=iterator,
                  train_dataset=train_dataset,
                  validation_dataset=dev_dataset,
                  patience=10,
                  num_epochs=NUM_EPOCHS,
                  cuda_device=0)

trainer.train()

训练完成后,我们可以使用训练好的模型对新的文本进行命名实体识别。以下是一个简单的代码示例:

from allennlp.predictors.predictor import Predictor

predictor = Predictor.from_path("path/to/trained/model/file")

result = predictor.predict("John Smith lives in London")

以上就是使用AllenNLP进行命名实体识别的示例。