【机器学习】李宏毅——Domain Adaptation(领域自适应)
在前面介绍的模型中,一般我们都会假设训练资料和测试资料符合相同的分布,这样模型才能够有较好的效果。而如果训练资料和测试资料是来自于不同的分布,这样就会让模型在测试集上的效果很差,这种问题称为Domain shift。那么对于这种两者分布不一致的情况,称训练的资料来自于Source Domain,测试的资…
在前面介绍的模型中,一般我们都会假设训练资料和测试资料符合相同的分布,这样模型才能够有较好的效果。而如果训练资料和测试资料是来自于不同的分布,这样就会让模型在测试集上的效果很差,这种问题称为Domain shift。那么对于这种两者分布不一致的情况,称训练的资料来自于Source Domain,测试的资…